ICSE-6 2012

PARIS Aug. 27-31, 2012 6th International Conference on Scour and Erosion

New Directions in Scour Monitoring

TITE I TITE TO A TITE TO A

Beatrice E. Hunt, P.E., AECOM Gerarda M. Shields, Ph.D., P.E., New York City College of Technology Gerald Price, ETI Instrument Systems, Inc.

New Directions in Scour Bridge Scour Monitoring

- Background
- New developments
- Revisions to U.S. FHWA HEC-18
- Conclusions

National Guidance – FHWA HEC-23

Bridge Scour and Stream Instability Countermeasures

New Third Edition, 2009

http://www.fhwa.dot.gov/engineering/hydraulics/pubs/09111

Practice Report - NCHRP Synthesis 396

Monitoring Scour Critical Bridges

2009

http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_syn_396.pdf A=COM

Bridge Fixed Scour Monitoring Systems

- Real time monitoring
- Remote
- Wireless
- Data loggers
- Web-based
- Automatic alerts
- DATA ANALYSIS
- SENSORS

Data Being Collected

- Streambed elevations
- Bridge movements

- Water stage
- Velocity measurements
- Rainfall

Telemetry Options

Landline

Satellite

Cellular

Data Loggers

AECOM

Internet

<u>File View Window Help</u>

Willis Avenue Bridge over the Harlem River / NYCDOT

AECOM

Powering the System

Commercial Power

Types of Fixed Scour Monitors – FHWA HEC-23 (2009)

Sonar

Tilt Sensor

Time Domain Reflectometer

Magnetic Sliding Collar

Sonar Scour Monitors

AECOM

FHWA HEC-23

3-D Profiling Scanning Sonars

- Can observe wide areas of scour, 19,000 m²
- Useful for monitoring armoring countermeasures

Acoustic Measurements – Four Transducers

Float-out Devices

TXDOT

Texas A&M

Tethered Buried Switches (TBS)

TXDOT

Wireless Smart Rocks

- Smart rocks sensors packaged in rocks
- Passive sensors/rocks directly read by instruments above water
- Active sensors/rocks connected to a mobile vehicle with wireless communication systems
- Localization of smart rocks for scour information mapping on a GIS platform

Tilt Sensors

Texas A&M

Caltrans

Motion Sensors / Accelerometers

TXDOT

Monitoring of 3 Bridges for Scour New York City Department of Transportation

	no scour	1ft	3ft	4ft
Frequency	14.16	14.09	13.99	13.86
	14.73	14.70	14.69	14.67
	15.58	15.55	15.52	15.48
	16.41	16.36	16.29	16.24
()				
Modal ratio	(
1 to 2	1.040	1.043	1.050	1.058
2 to 3	1.058	1.058	1.057	1.055
3 to 4	1.053	1.052	1.050	1.049
1 to 4	1.159	1.161	1.164	1.172

Mosholu Bridge (4th Vibrational Mode)

No Scour 16.41 Hz.

With Scour 16.19 Hz.

With 1ft Scour on Downstream Side of Pier #3 16.35 Hz.

www.straam.com

STRAAM Contact: <u>twinant@straamllc.com</u>

Additional Studies

- Fiber Bragg Gratings (FBG) sensors University of Illinois at Chicago (March 2011)
- Radio Frequency Identification (RFID) systems The University of Iowa (January 2010)

AECOM

Bridge Scour Monitoring Technologies: Development of Evaluation and Selection Protocols for Application on River Bridges in Minnesota Minnesota Department of Transportation RESEARCH SERVICES

Office of Policy Analysis, Research & Innovation

Jeff Marr, Principal Investigator St. Anthony Falls Laboratory University of Minnesota

March 2010

Research Project Final Report #2010-14

Future Needs in Scour Monitoring Technology

- More robust devices increased reliability and longevity
- Decreased costs
- Simpler installation techniques
- Less maintenance and repairs
- Devices more suitable for smaller and larger bridges
- Combine scour monitors with devices that measure additional hydraulic variables, structural monitors or cameras
- Funding for the scour monitoring program postinstallation

2012 Revisions - FHWA Hydraulic Engineering Circulars

- 1991 1st Edition
- 2001 4th Edition
- 2012 5th Edition

- 1991 1st Edition
- 2001 3rd Edition
- 2012 4th Edition

New Edition of HEC-18

- Scour Program Policy & Regulatory Basis
 - Scour Evaluations
 - Plans of Action
 - Scour Countermeasures
- Alternative Scour Equations
 - Contraction
 - Abutments
 - Piers
 - Bottomless Culverts
- New Chapter on Geotechnical Considerations
- Revisions to Chapter on Tidal Scour (HEC-25)

FHWA Design Philosophy

- 2010: U.S. Congress Recommendations
 - For infrastructure initiatives and bridge program goals
 - Apply risk-based and data-driven approaches
 - Importance of the structure
 - Provide safe and reliable waterway crossings
 - Consider the economic consequences of failure
- 2011: FHWA implements risk/data to National Bridge Inspection Program (NBIP)
- 2012: FHWA issues Memorandum to apply risk/data to FHWA Scour Program
 - Scour evaluations, unknown foundations, POAs and countermeasures

FHWA Policy & Regulatory Basis

Tables 2.1 & 2.3: Hydraulic Design, Scour Design, Scour Design Check& Scour Countermeasure Design Flood Frequencies

Hydraulic Design	Scour Design	Scour Design	Scour
Flood Frequency	Flood Frequency	Check Flood	Countermeasure
(Q _D)	(Q _S)	Frequency (Q_C)	Design Flood
			Frequency (Q _{CM})
Q ₁₀	Q ₂₅	Q ₅₀	Q ₅₀
Q ₂₅	Q ₅₀	Q ₁₀₀	Q ₁₀₀
Q ₅₀	Q ₁₀₀	Q ₂₀₀	Q ₂₀₀
Q ₁₀₀	Q ₅₀₀	Q ₅₀₀	Q ₅₀₀

Note: Table developed from 2012 FHWA HEC-18. Numbers shown in red are recommendations from FHWA guidance prior to 2012.

AECOM

Conclusions

- Developments in sensors and data analysis are most needed
- Proof of concept in laboratory and fields tests are ongoing
- Goals for the monitoring systems:
 - o Robust
 - o Ease of installation, maintenance and repairs
 - $_{\odot}$ Better long-term power
 - $_{\odot}$ Longer transmission distances and through various surfaces
 - Simplification of data analysis
 - Lower costs
- Alternatives with revised U.S. FHWA HEC-18 guidance re-evaluations and prioritization

ICSE-6 2012

Thank You

PARIS Aug. 27-31, 20126th International Conference on Scour and Erosion

beatrice.hunt@aecom.com

