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Bestimmung von Porenwasserdruckreaktionen initialisiert durch
turbulente Strömungsmuster unter Anwendung einer Kombination
aus Lattice-Boltzmann Simulation und analytischer Berechnungs-
methodik
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ABSTRACT: Lattice-Boltzmann simulations have been used to calculate flow patterns over and inside a gravel
bed, which in turn rests on sandy subsoil. The resulting flow pressure profile has been employed to obtain the
excess pore pressure in the subsoil; both the temporal and spatial developments have been evaluated by
means of an analytical solution of Biot’s equations for partially saturated soil. Using the analysis one is able to
ascertain the location of most likely damage in the subsoil of a river or sea bed. The effect of an obstacle in the
flow is examined and the presence of such an object has non-negligible consequences for the potential damage
assessment.

KURZFASSUNG: Die Methode der Lattice-Boltzmann Simulation wurde benutzt, um Strömungsmuster
oberhalb und innerhalb eines Kiesbettes zu bestimmen, das auf einem sandigen Untergrund liegt. Die aus der
Durch- und Überströmung resultierenden Wasserdruckprofile wurden als Eingangsgrößen für die Bestimmung
der im unterlagernden Sand initialisierten Porenwasserüberdrücke angesetzt. Sowohl die zeitlich als auch
räumlich veränderlichen Porenwasserdruckentwicklungen konnten analytisch mit Hilfe der Konsolidations-
Gleichung von Biot für den teilgesättigten Sand unter Wasser berechnet werden. Die Anwendung einer solchen
Analyse hilft, mögliche Schadenspotentiale hinsichtlich seines örtlichen Auftretens im Untergrund eines
Gewässerbettes zu bestimmen. Die Einflüsse von Strömungshindernissen oberhalb des Kiesbettes auf die
möglichen Schadenspotentiale im Untergrund und an der Gewässersohle sind nach den Ergebnissen dieser
Untersuchung keinesfalls vernachlässigbar.
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10.1 Introduction
This paper is concerned with the analysis of rip-rap-
protected, non-cohesive sand layers subjected to
flow conditions tha3t are non-uniform, both in a
temporal and in a spatial sense. The temporal non-
uniformity is associated either with ‘turbulence’ in the
mean flow outside the rip rap layers, or with explicit
time-dependent loading due to wave action. The
spatial non-uniformity may also be due to wave
loading (the wave length being much greater than
the mean size of the protective granular layer), but
arises chiefly as a result of obstacles in the
extraneous flow. The design of stable rip rap layers
is treated in the literature /Raudkivi 1998/ (see
section 9.10 for an overview). The sand layer
underneath the protective layer is usually deemed to
be stable if the protective filter layer is stable and the
ratio of the sizes of the base material to the filter
material satisfies Terzaghi’s conditions /Terzaghi
1943/. Alternatively geotextiles may be employed,
especially for temporary structures. The thickness of
the filter is designed in such a way that in a
geometrical sense Terzaghi’s rules make sense,
which in practice comes down to some 0.2 metres
for gravel filters. Size segregation during deposition
is generally viewed as undesirable.

The question now is what happens when the rip rap
cannot be used in such a way that Terzaghi’s
geometrical filter conditions are satisfied. The gravel
will still have a protective function in that it
moderates the flow over the sandy subsoil, yet -
potentially - erosion of the non-cohesive sand may
take place if flow conditions in the pores of the
deposited rip rap are sufficiently severe. In a naïve
analysis then, the flow conditions in the pores need
to be analysed and if the local flow conditions
(tangential to the filter/base interface) exceed the
critical conditions /Raudkivi 1998/ (see chapter 3)
instability and subsequent erosion may be expected.
This analysis is naïve because it only tells part of the
story and overlooks an important mechanism: the
combined effect of small amounts of gas in the
subsoil and temporal pressure variations.

The notion that gas in the subsoil may affect the
erosion susceptibility of a non-cohesive soil has
been explored in a recent paper /Köhler & Koenders
2003/. In the theoretical part of this paper a partially
saturated sandy half-space is loaded by an external
pressure fall. Using Biot’s equations /Biot 1941/ the
pressure profile in the half-space is calculated. It
transpires that even in a slightly unsaturated
environment fluidisation may take place if the
external pressure goes on falling for long enough. In
the experimental part of the paper it is shown by
means of an endoscopic technique that the gas is
present in bubble form; the bubbles adhere to the
sand grains and are virtually indestructible. During
the external pressure fall they expand; the
fluidisation, when it takes place, is also verified with
the use of endoscopy.

The theory predicts that fluidisation of an unprotec-
ted bed first takes place after a time 1t   reckoned
from the moment when the external pressure had
started to fall at a rate of σ& . An estimate of 1t  is a
key design parameter for unprotected beds.
Basically, it states: if one expects the external
pressure fall at a rate σ&  to continue for less than a
period of 1t , then the bed will not fluidise. If it goes

on for a period of time that is greater than 1t , then

fluidisation will occur. The estimate for the time 1t  is
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where Y is the pressure-equivalent water depth,   the
critical gradient /Terzaghi 1943/ (measured in
engineering units as a fraction of the fluid specific
weight wγ ) and α a system parameter with the
dimension of the inverse of the square root of a
velocity. The latter is the only variable that contains
information about the particle/fluid/gas mixture. The
presence of the gas bubbles is represented through
the saturation measure, is , stating the fraction of the
fluid that is not in bubble form. Note that the bubbles
tend to adhere to the grains; in fact it is very difficult
to get rid of them and a typical figure for the
saturation in natural deposits at water depths that
are less than 10 m deep is some 95-99%. The
saturation is embedded in the parameter α as follows

( )
k

sna i−
=

142          (10-2)

where n is the porosity of the deposit and k its
permeability.

Protection of the subsoil can be introduced by means
of a layer of a coarse, more permeable material. The
analysis and design of the thickness of the layer has
been discussed by /Roussell et al 2000/. In this case
the whole system fails due to the mechanism that
involves gas in the subsoil and not local failure in the
pores of the protective layer. This analysis is also
one-dimensional.

The geometry of the half-space analysis is naturally
limited; its importance lies in the introduction of the
concepts, though direct application is possible, for
example in locks. In this paper the analysis is
extended to include both another important
engineering geometry as well as external pressure
fluctuations that arise from a time-dependent flow
field. The latter may result from either continuous
flow over an obstacle or from explicit wave-loading,
or – in principle – a combination of these two.

In order to illustrate the problem Bild 10.1 is helpful.
A rigid, impermeable obstacle has been placed on a
coarse gravel layer; the latter protects a non-
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cohesive, partially saturated subsoil. Flow is applied
to the outer regions of the conformation. The
approach that is taken to study these problems is as
follows. The flow in the open water and in the coarse
layer is modelled in two dimensions by means of a
lattice-Boltzmann technique. This technique is par-
ticularly suited to the highly irregular boundaries that
result from the gravel material. At the same time this
technique can cope with the wide variety of flow
conditions that appear in this problem: the typical
Reynolds number in the open water is very much
higher than the one that reigns in the flow in the rip-
rap. The flow in the subsoil is not simultaneously
modelled by the lattice-Boltzmann technique. In the
sandy region the boundary conditions from the flow
modelling are used to calculate the excess pore
pressures analytically. Due consideration is given to
the presence of gas.

The purpose of the calculations is to establish the
regions in which damage is most likely. Erosion may
be associated with the two mechanisms: high
interfacial tangential fluid velocities or with local
fluidisation due to gas in the subsoil in the sand. A
combination of both is naturally also possible. In this
paper the first mechanism is not further explored,
because – as mentioned above – there is already
much literature on erosion due to high tangential
flows.

The analysis is part of a wider research exercise. In
this paper the analysis is demonstrated. In a
forthcoming paper a series of experiments will be
reported, as well as variations of the calculations.

10.2 Estimate of the pressure gra-
dient of a loaded half-space

It was demonstrated by /Köhler & Koenders 2003/
that for a partially saturated subsoil under shallow
conditions, the excess pore pressure development
( )t,y,xp  as a function of position and time is

approximately described by the following equation
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Here k is the soil permeability, n the porosity and

wγ  the specific weight of fluid (water); 0p  is the
mean ambient pressure near the top of the subsoil.

The position is identified by the horizontal co-
ordinate x and the vertical co-ordinate y. The
saturation is denoted by is and is assumed to be a
constant, independent of time and position. The
equation is valid for fine-grained soils in which the
fluid flow is laminar. The further crucial
approximation that has been made is that the
stiffness of the soil is much greater than the stiffness
of the fluid-gas mixture. This can only be true under
unsaturated circumstances, but that is the limit
considered here. As a rule of thumb the
approximation is true for dense non-cohesive soils
with gas content in the fluid > 1%.

For convenience a parameter A is introduced as

( )iw sn
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This parameter has the dimension of 12 −sm  and

plays the role of consolidation coefficient.

Equation (10-3) with the definition of the parameter A
gives
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A Fourier transform (denoted by a ^) of the equation
with respect to the x-co-ordinate with Fourier wave
number χ is applied to give equation (10-5), and
gives:

Bild 10.1 Geometry of the problem. The thickness of the coarse layer is 0y
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A Laplace transform with respect to t is performed
with frequency s; the transformed variable is denoted
by a ~
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The initial excess pore pressure in the process is
zero and therefore the last term on the left-hand side
vanishes. Equation (10-7) represents an ordinary
linear differential equation. The excess pore
pressure gradient vanishes for very large values of -y
(no flow at great depth) and therefore the solution is

( ) Asyesypp /,0,
~̂~̂ 2 +== χχ .          (10-8)

Applying the convolution theorem for both Laplace
and Fourier transform the excess pore pressure field
is obtained as
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Both the inverse Laplace and Fourier transforms are
easily carried out /Abramowitz & Stegun 1965/,
(29.2.12, 29.3.82); /Gradshteyn & Ryzhik 2000/,
(3.922.4) to give
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The excess pore pressure at 0=y  needs to be
given for all horizontal positions and time points. This
quantity is supplied by the numerical lattice-
Boltzmann solution in the open water and in the
coarse layer.

The form of formula (10-10) is suitable for numerical
implementation for 0≠y . For y in the vicinity of
zero change the integration variable ζ to

2/4 yAτζ ≡  . The integral of Equation (10-10)
then reads
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The integration over y is dominated by the region in
the vicinity of 0=ζ  due to the presence of the term

2/1 ζ ; therefore in the vicinity of 0≈y  the

argument ( ) tAyt ≈− 4/2ζ . The integral over τ is
now carried out to give
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The integrand is zero for all 0,0 ↑≠ yξ  and
therefore it is only necessary to investigate the result
in the vicinity of 0=ξ  and here

( ) ( ),tx,p,tξ,xp 00 ≈− . Thus, using /Gradsheyn &
Ryzhik 2000/, (see section 3.466)

( ) ∫
∞+

∞−

+
−

↑ +
= 22

4

0

22

1lim0
ξ

ξ

y
yedξ

π
-,tx,pp(x,y,t)

At
y

y
  (10-13 a)

 ( )
( )

( ) ( ).01lim02
0

22

4

0

22

,tx,p
y

eydξ
π

,tx,pp(x,y,t)
At

y

y
=

+
−

= ∫
∞+

+
−

↓− ξ

ξ

     (10-13 b)

This is the expected result.

For the numerical equivalent of Equation (10-10) is
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where N is the number of spatial points along the
interface, M the number of the temporal points. The
excess pore pressure at the interface must be given
as a function of both position and time. This function
is supplied by the lattice-Boltzmann simulation.

10.3 The lattice Boltzmann method
for the computation of fluid
flow

The simulation of the flow in both the open water and
the coarse layer regions is performed with the lattice
Boltzmann method. This method is especially
appropriate for the highly irregular boundary
conditions that are present in the coarse layer. There
is a wealth of literature on the method, which may be
employed in a diverse range of applications: fluid
flow, flows in complex geometries, multiphase and
multicomponent flows, particles in fluids, heat
transfer and reaction-diffusion. Here a brief
discussion is included pertaining to the basics of the
method; especially the scaling rules for physical
parameters in fluid flow and specification of the
boundary conditions are mentioned. Overview
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publications on the subject are /Chen & Doolen
1998/, /Chopard & Droz 1999/ and /Succi 2001/.

In the lattice Boltzmann method the physical
quantities of interest are described in terms of N
fields ,t)(fi r  ( Ni ...1= ) defined at each point r of a
lattice and at each discrete time step t. In
hydrodynamic applications the fields represent fluid
particle numbers. The fluid particles may have
velocities; these are classified in a discrete set of
possibilities in both size and direction and the
subscript i refers to a possible velocity direction. By
way of illustration a two-dimensional lattice is shown
in Bild 10-2. This is a square lattice; the 8 unit
vectors ie  point to the nearest neighbour in direction
i. Fluid particles may move along any of these unit
vectors.

e1

e5
e2e6

e3

e7 e4
e8

Bild 10.2 The eight unit vectors  ie  pointing to the
nearest neighbouring site in direction i.

The next step is to consider evolution in the fluid
particle numbers. There are two contributing factors
to the change in the number of particles at any grid
point. The first is free convection, stating

( ) ( )tftf iii ,1, rr =++ e         (10-15)

The lattice spacing and the time increment are most
conveniently chosen to be equal to unity. Equation
(10-15) allows particles moving in the same direction
to occupy the same lattice site at the same time. This
leads to unphysical results and therefore an
exclusion principle needs to be applied. To deal with
this problem particles are allowed to collide on the
lattice; this feature is introduced in the second
element of the evolution process, a collision operator
Ω; the modified evolution equation then reads

( ) ( ) ( )tΩtftf iiii ,,1, rrr =−++ e         (10-16)

The function if  is the mesoscopic particle distri-
bution, which is the ensemble average of the particle
occupation. Furthermore, it is assumed that the
collision operator only depends on the incoming
particle distribution /Chen & Doolen 1998/; the
evolution equation then becomes the so-called
lattice-Boltzmann equation

( ) ( ) ( )iiiii fΩtftf =−++ ,1, rr e         (10-17)

Once the collision operator is specified, the rule is
completely local and easy to compute. The
macroscopic hydrodynamic fields, mass density ρ,
fluid velocity u and momentum flux Π, are moments
of the particle distribution function:

∑∑∑ ===
i

iii
i

ii
*

i
i fff eee Π,, ** uρρ     (10-18)

The collision operator is chosen in such a way as to
allow the Navier-Stokes equation to be equivalent to
equation (10-17) in the appropriate limit. It is
assumed that the distribution function if is always

close to the equilibrium state )(eq
if . The collision

operator can then be expressed in terms of the so-
called ‘collision matrix’ M

( ) ( ))(eq
jjijii ffMfΩ −=         (10-19)

The particle distribution is furthermore assumed to
relax to the equilibrium state with a single relaxation

time *τ /Bhatnagar et al 1954/, as well as being
isotropic

ijijM δ
τ *
1

−=                    (10-20)

This is called the Bhatnagar-Gross-Krook (BGK)
collision matrix and its implications have been widely
studied (see for example /Chen & Doolen 1998/).
Inserting the BGK operator back into the lattice-
Boltzmann equation leads to the famous LBGK
evolution equation

( ) ( ) ( ) ( )[ ]tftftftf eq
iiiii ,,1,1, )(

* rrrr −−=++
τ

e     (10-21)

Various macroscopic parameters are identified. The

relaxation time *τ  in equation (10-21) is related to

the kinematic viscosity *γ as

( )
2
1** −= τβγ         (10-22)

where β is a constant that is dependent on the
geometrical details of the lattice (hexagonal, square,
or cubic, /Succi 2001/). Physically realistic, positive
kinematic viscosities are obtained for relaxation

times that satisfy 2/1* >τ .

The fluid pressure is given by

( ) ( )( )ρ,tρc,tP s −= rr 2         (10-23)
where ρ  is the mean density of the fluid and sc  is
the speed of sound.

In this study high Reynolds number flow is of
interest. In the simulation care has to be taken of
high Reynolds number (turbulent) flows to ensure a
fine enough grid to resolve the short scale structure.
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Quantities LBGK
parameters

Physical
parameters

Speed of
sound

*
sc *

ss c
∆t
∆rc =

Density ∑=
i

ifρ* *ρ
∆r
∆mρ

3
=

Velocity
∑=

i
ii ef

ρ
u 1* *u

∆t
∆ru =

Viscosity ( )12 *
6
1* −= τγ *γ

∆t
∆rγ

2
=

Pressure ( ) *2** ρcP s= *P
∆r∆t
∆mP 2=

Tabelle 10.1 Conversion rules for LBGK quantities and
their corresponding physical values.

10.4 Boundary conditions
In this section the boundary conditions are put
forward for the flow problem in both open water and
coarse layer regions. There are two conditions that
require specification: (a) solid fluid boundary
conditions and (b) conditions on the outside of the
region as a whole.

For (a) the no-slip boundary condition must be made
relevant to the lattice-Boltzmann method. This is
done by ensuring that no fluid particle can flow into
the wall.

The node points that most closely approximate the
wall surface are treated in a special manner.
Following /Ladd 1994/ the fluid inside the wall is
given a very high mean mass density. Therefore, the
collision between fluid particles inside and outside
the wall is such that the fluid particles in the fluid
region appear to bounce back. This procedure is
equivalent to the continuum no-slip condition.

For (b) various approximations are introduced. The
bottom of the coarse layer requires a suitable
boundary condition. Essentially a slipping boundary
condition for the tangential velocity component is
appropriate, see /Saffmann 1971/ and /Beavers &
Joseph 1967/. This condition reads for the slip
velocity

y
u

sLsu
∂
∂

−=               (10-24)

where the slip length sL is related to the geometric

permeability gk  of the subsoil as

α
g

s
k

L = .         (10-25)

The geometric permeability is related to the
engineering permeability as wg kk γµ /=  , where µ

is the viscosity of the fluid. /Saffman 1971/ uses α ≈
0.1. The geometric permeability gk  has the form

cdkg /2= , with c a porosity dependent constant,

and d the mean particle diameter of the subsoil. In
practice d is so small that sL is zero and the no-slip

condition holds. The normal velocity nu is in principle
related to the solution of the pressure in the subsoil.
In practice, the approximation 0=nu  may be
introduced.

For the flow in the open water region, far from the
obstacle, two different velocity profiles have been
applied; logarithmic velocity and wave loading.

10.5 Flow with logarithmic velocity
profile

The flow in the open water region is expected to
display a logarithmic velocity profile with respect to
the x-direction. In this direction periodic boundary
condition are enforced. At the top of this region a
constant velocity U is prescribed.

The logarithmic velocity distribution becomes invalid
in the laminar sub-layer, which has height y. In this
sub-layer, which is very thin compared to the
dimension of the whole problem, and chosen to be
equal to half of the mean coarse particle diameter, a
linear velocity profile is imposed. The latter vanishes
at the top of the coarse layer; a zero value is also
introduced on the sides of the coarse layer in the
region 00 yy ≤≤ , see Bild 10-3.

The logarithmic velocity profile for δyy +> 0  is
expressed in the Karman constant b, the velocity
parameter 0u and the sub-layer thickness δ , see
/Landau & Lifshitz 1959/,

δyyyyy
bδ
uu +≤<−= 000

0 ,)(     (10-26)

δ
δ

+>
−

= 0
00 ,ln yye)yy(

b
uu     (10-27)

The velocity at the top of the open water region

0yHy +=
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is

)
δ

He(
b

uU ln0=         (10-28)

The velocity parameter 0u  is thus related to the
velocity at the top of the open water region as

)ln(
0

δ
He

bUu =        (10-29)

All these boundary conditions are implemented in the
lattice-Boltzmann procedure. The control variable
that ultimately defines the velocity field in the open
water and coarse layer region is the constant velocity
at the top U.

Everything else depends on the details of the
geometry. While there is considerable time-
dependence in the flow field, these experiments will
be called steady flow experiments, because there is
no explicit temporal loading.

10.6 Wave loading flow
In these experiments there is explicit time-
dependence in the external forcing of the flow. The
flow in the open water region is prescribed as a wave
velocity profile in the vertical y-direction. Periodic
boundary condition is enforced in the x-direction.

A simple oscillation in the y-direction with frequency
ω and amplitude L can be written as a function of
time t and horizontal position x as

( )txLHxy ω
λ
π cos2sin)( 






+=   (10-30)

where fπω 2= .

Therefore, the wave velocity vector at the top of the
open region is

( )













− txL ω
λ
πω sin2sin,0   (10-31)

The wavelength λ is chosen in such a way that it fits
the size of the problem exactly, which is necessary
to satisfy the periodic boundary conditions.

The numerical values of the wave loading
parameters are presented in Tabelle 10-2. In
addition to simple wave loading, a loading
programme that combines waves with steady
velocity is also possible.

10.7 Results of the simulations
The table below summarises the details of the
geometries and the velocity profiles of the various
simulations. The results of the simulated tests are
presented as follows. The flow in the open water and
coarse granular layer is demonstrated by means of a
single snapshot (though cartoon sequences of the
simulations are available).

The excess pore pressure distribution in the subsoil
is shown as a sequence of snapshots, as the
temporal development of this parameter is obviously
the key to obtaining the location where erosion due
to gas is most likely to occur.

10.7 Steady flow simulations (tests
1 & 2)

The results of tests 1 and 2 (see Tabelle 10-2) turn
out to be very similar, despite the difference in
loading speed. Eddies are generated downstream
from the obstacle. A snapshot of the calculated flow
pattern is shown in Bild 10- 4.

The mean size is of the same order of magnitude of
the height of the obstacle. The excess pore pressure
is shown in Bild 10-5, also for test number 1.

Bild 10.3 The height of the system is 0yH +  , and δ   is the viscous sub-layer length. A
logarithmic velocity profile has been imposed on the left side of the system and a

δ
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The region that experiences the greatest risk of
being damaged by oscillatory pore water flows is
located at 600400 << x  (lattice units), in other
words in the region between one and two obstacle
heights downstream from the obstacle.

10.8 Wave loading with no obstacle
(test 3 & 6)

Three waves with wave length 0.29 m have been
imposed at each time step. A snapshot of the flow
pattern of test 3 is shown in figure 6.

In this simulation the flow is caused by the vertical
wave bouncing back from the gravel, while at the
same time dispersion is displayed. The same
phenomenon is observed in test 6, though in this test
the water depth was greater, thus ameliorating the
dispersion phenomenon. From the animation of the
pressure in the subsoil ( see Bild 10-7) it is seen that
the pressure oscillates in harmony with the wave.
This is expected. As result the excess pore pressure
gradient will oscillate too, which may cause erosion
in the subsoil. The potentially most damaged
locations appear at about  and  , in sympathy with
the applied wave and extending to about half the
wavelength.

Test
no.

Type of
test

Flow parame-
ters

Gravel layer
thickness

  y0 (m)

Water
level

H (m)

Mean
gravel
size

d (m)

Obstacle    
height × width

(m×m)

1 Steady
flow

U = 0.08 ms-1 0.018 0.1 0.005 0.05 × 0.02

2 Steady
flow

U = 0.29 ms-1 0.1 0.2 0.01 0.1 × 0.11

3 Wave
loading

λ = 0.29 m

f = 1.0 s-1

0.1 0.2 0.01 none

4 Wave
loading

λ = 0.29 m

f = 1.0 s-1

0.1 0.2 0.01 0.1 × 0.1

5 Wave
loading

λ = 0.29 m

f = 1.0 s-1

0.04 0.16 0.01 0.04 × 0.06

6 Wave
loading

λ = 0.29 m

f = 1.0 s-1

0.1 0.4 0.01 none

Tabelle 10.2 Details of the simulated tests. The subsoil has a permeability
14104 −−×= msk  and  the saturation is  95.0=is .

Bild 10.4 Snapshot of the flow pattern of test number 1.
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Bild 10.5 Sequence of snapshots of the excess pore pressure in the subsoil for steady flow. The
areas with the greatest colour variation are most at risk from erosion.

Bild 10.6 Snapshot after 70,000 time steps of the flow lines as a function of the position for the case of
wave loading with no obstacle flow.
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Here, 10,000 time steps in the simulation correspond
to 0.8 seconds in real time.

In test number 6 the damping of the wave is so
severe that only very small pressure fluctuations are
observed and these are not reported separately.

10.8 Wave loading with an obstacle
(test 4 & 5)

The simulation of the wave loading flow over an
obstacle with a height of 0.1 m has been carried out
with a wavelength of the free surface flow of 0.29 m.
In this experiment eddies are generated as a result
of the presence of the obstacle.

This is a very complex flow pattern; a snapshot is
shown in Bild 10-8. The result is roughly the same
for both tests and therefore only test number 4 is
shown. The size of the eddies is of the order of the
height of the obstacle.

Bild 10-9 shows the associated excess pore
pressure in the subsoil. The presence of the obstacle
has the effect of attracting damage. The location of

the regions that are most at risk are just in front and
just behind the obstacle: the obstacle itself occupies
the region 312232 << x  .

10.9 Conclusions
These two-dimensional simulations need to be
compared with real experimental data. The results
are indicative, as real flow situations will be three-
dimensional and turbulence is a three dimensional
phenomenon. Nonetheless, indications of the likely
locations of damage-susceptible regions, associated
with gas in the subsoil, is useful.
For the steady flow problem over an obstacle the
most likely location is some two obstacle heights
downstream. For wave loading without an obstacle, it
is directly associated with the troughs and crests of
the waves, but only in shallow water. For wave
loading in the presence of an obstacle the region of
potential greatest damage is on either side of the
object and the risk of erosion here is enhanced
compared to wave loading in the absence of an alien
object.

Bild 10.7 Sequence of snapshots of the excess pore pressure in the subsoil for wave loading in the absence of
an obstacle. The areas with the greatest colour variation are most at risk from erosion.
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10.11 List of symbols

α ( ) ksn i /14 −

A consolidation coefficient ( 12 −sm )
b Karman constant (-)

Bild 10.8 Stream lines for the fluid flow around an obstacle in wave loading at the time point of 41,000 time steps
(4 seconds into the simulation with a wave of a duration of 1 s).

Bild 10.9 Subsoil excess pore pressure for wave loading with an obstacle. The regions where the greatest
damage potentially takes place is just before and behind the obstacle.



Davis, Köhler & Koenders: Pore pressure response due to turbulent flow patterns ...

BAW-Workshop: Boden- und Sohl-Stabilität – Betrachtungen an der Schnittstelle zwischen Geotechnik und Wasserbau
10-12

c porosity-dependent coefficient (-)

sc speed of sound ( 1−ms )

*
sc scaled speed of sound (-)

d diameter of subsoil grain (m)

ie unit vector (-)

f frequency ( 1−s )

if particle distribution function (-)
eq

if euilibrium distribution function

ci critical gradient (-)

H fluid height of open water (m)

k engineering permeability ( 1−ms )

gk Geometric permeability ( 2m )

L amplitude of applied wave (m)

sL slip length (m)

M number of temporal points (-)
M collision matrix (-)
n porosity (-)
N number spatial points on the

interface (-)

N number of lattice points in the
simulation (-)

p excess pore pressure (Pa)

0p ambient pressure (Pa)

P total fluid pressure (Pa)
r location vector (m)

s Laplace frequency ( 1−s )

is saturation (-)

t time (s)

1t duration of pressure fall (s)

u velocity vector ( 1−ms )
*u scaled velocity vector (-)

0u velocity outside laminar sub-layer

( 1−ms )

nu normal velocity ( 1−ms )

su slip velocity ( 1−ms )

U velocity at the top of the simulation
for steady flow ( 1−ms )

x horizontal position co-ordinate (m)
y vertical position co-ordinate (m)

0y thickness of the gravel layer (m)

Y pressure-equivalent water depth (m)
α coefficient for slipping boundary

condition (-)
β lattice-geometry-dependent

coefficient (-)
*γ scaled kinematic viscosity (-)

wγ unit weight of water ( 3−Nm )

δ thickness of the laminar sub-layer
(m)
δ Kronecker delta (-)
∆m mass of fluid particle (kg)

∆r lattice spacing (m)
∆t time step (s)

χ Fourier wave number ( 1−m )
λ wavelength (m)
µ fluid viscosity (Pas)

ω circular frequency ( 1−s )
Π scaled momentum flux (-)
Ω i collision operator (-)

ρ fluid density ( 3−kgm )

*ρ scaled fluid density (-)

ρ  mean density of the fluid (-)

σ& rate of pressure fall ( 1−Pas )
τ time (s)

*τ scaled relaxation time (-)
ξ position (m)

ζ 2/4 yAτ  (-)

λ wavelength (m)
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