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The finite element method (FEM) has obtained a strong 
position in geotechnical analysis and design, next to 
conventional design methods. However, FEM is more 
suited for situations involving complex geometries and 
soil-structure interaction. Nevertheless, FEM also has its 
limitations, in particular when it comes to large deforma-
tions and material flow, as it occurs when installing off-
shore foundations and pipelines in the seabed. In such 
cases the recently developed material point method 
(MPM) is much more suitable to deal with the effects of 
large deformations. 

This contribution gives an introduction to MPM for geo-
technical analysis. In addition, it demonstrates its use for 
geotechnical offshore applications (for example the instal-
lation of piles and anchors in the seabed, spudcan pen-
etration and extraction, the creation of trenches for pipe-
lines and cables, and the movement of pipelines in the 
seabed). This contribution presents some of the challeng-
es when using MPM in practical applications, since MPM 
calculations are more time consuming and more sensitive 
to inaccuracies than FEM calculations. Topics that are dis-
cussed are the use of DDMP (dual-domain material point 
method) to enhance the ‘smoothness’ of the solution and 
to improve the accuracy of stresses in the case of material 
points moving from one cell to another, how to deal with 
‘empty’ cells, determination of active domain boundaries, 
connecting MPM to FEM and the application of loads and 
boundary conditions. The presented solutions are meant 
to facilitate the use of MPM on a larger scale for geotech-
nical engineering applications.

Die Finite-Elemente-Methode (FEM) ist inzwischen 
auch in der geotechnischen Analyse ein häufig be-
nutztes Werkzeug. Insbesondere ist FEM sehr gut für 

Anwendungen mit komplexen Geometrien und Boden-
Bauwerk-Interaktionen geeignet. Nichtsdestotrotz hat 
FEM natürlich auch seine Einschränkungen. Dies ist 
insbesondere der Fall, wenn es zu großen Verformun-
gen und Materialflüssen, wie z. B. in der Installation 
von Offshore-Fundamenten oder Pipelines im Meeres-
boden üblich, kommt. Für solche Anwendungen ist die 
Material-Punkt-Methode (MPM) eine deutlich bessere 
Alternative, um das Auftreten von großen Verformun-
gen zu simulieren.

Dieser Beitrag soll eine Einführung in MPM anhand 
einer geotechnischen Analyse geben. Die praktische 
Anwendbarkeit wird anhand von verschiedenen geo-
technischen Offshore-Anwendungen (z. B. Installation 
von Pfählen und Ankern im Meeresgrund, Ziehen von 
Schutzgräben für Pipelines und Kabeln und Bewegung 
von Pipelines im Meeresgrund) demonstriert. Dabei 
wird auch auf die unterschiedlichen Schwierigkeiten, 
die bei der Nutzung von MPM auftreten können, detail-
lierter eingegangen. Insbesondere soll diese Präsen-
tation auch zu einer breiteren Verwendung von MPM 
in der geotechnischen Analyse anregen und die damit 
verbundenen Vorteile aufzeigen.

1 Introduction
Einleitung

The conventional finite element method (FEM) has been 
used for several decades to predict deformation of soil 
in geotechnical engineering. Certain geotechnical pro-
cesses involve large displacements in the soil. Thus, 
conventional FEM cannot be used to analyse these 
types of problems because of the issue with mesh tan-
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gling when the deformations of the mesh become ex-
tremely large. In recent years, a few alternatives to FEM 
have been introduced to simulate large deformation 
problems, particularly the material point method (MPM). 
MPM was first introduced by Sulsky et al. (1994) and has 
meanwhile been used in various geotechnical applica-
tions such as modelling of landslides, cone penetration 
(Beuth et al. 2011), pile penetration (Lim et al. 2013), and 
spudcan penetration (Lim et al. 2014). However, these 
applications are still performed from a research per-
spective rather than for engineering and design. MPM 
calculations are more time consuming and more sensi-
tive for inaccuracies and numerical instability than FEM 
calculations. Hence, the use of MPM in practical ap-
plications brings some challenges. The following chal-
lenges and solutions are discussed in this contribution:

Expensive computational cost: By using a mesh relaxa-
tion method to connect the MPM analysis with FEM (see 
Lim et al. (2013) for further details), we have been able to 
limit the MPM computation to the area where potential 
large deformation will occur and can use conventional 
FEM in the other areas of the computational domain.

Contact algorithm: The MPM formulation already in-
cludes inherent rigid contact, but produces unrealisti-
cally rigid contact when used in soil-structure interac-
tion problems. We have adopted a level-set large sliding 
contact algorithm introduced by Andreykiv et al. (2011). 
It uses two non-matching meshes to model the contact 
between the soil and the structure, such as in spudcan 
and pile penetration.

Volumetric locking: We have also introduced a mixed 
displacement-pressure (p-u) formulation (Brezzi et al., 
1991) of FEM into our MPM implementation to resolve 

the volumetric locking of linear elements in undrained 
behaviour (incompressibility) by decoupling the volu-
metric stress and the deviatoric stress terms from the 
total stress.

Critical time step: The explicit formulation of MPM has a 
severe limitation of  the maximal time step size to avoid 
instability issues. Therefore, we have chosen an implicit 
formulation of MPM to eliminate this time stepping is-
sue and be able to select also larger time steps. Fur-
thermore, the existing FEM technologies formulated in 
implicit schemes can be directly integrated into MPM 
calculations.

This paper is structured as follows: In Chapter 2 pro-
vides an introduction to MPM and its implicit formula-
tion. The major challenges and its corresponding solu-
tions are discussed in Chapter 3. Chapter 4 presents 
some applications of the method in offshore geotechni-
cal engineering. The last chapter draws some conclu-
sions on the use of MPM in practical applications.

2 Implicit formulation of MPM
Implizite Formulierung der MPM

First, let us give an introduction to MPM, which has similar- 
ities with FEM, for geotechnical analysis. MPM can be reg- 
arded as FEM where the integration points (material points) 
are moving through the grid. A MPM calculation step can 
be divided into three phases: The initialisation phase, the 
Lagrangian phase and the convection phase (Fig. 1).

Phases 1 and 2 are similar to FEM; the difference is in 
Phase 3. Since information of stress and material state 
is contained in the material points, which can move 

Figure 1: Three phases in an MPM calculation step
Bild 1: Die drei Phasen eines Berechnungsschritts bei der MPM
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through the grid, it makes the method suitable for very 
large deformations. 

Governing continuum equations
For a continuous body W ⊂ Rn, n ∈ {2,3}, with a boundary 
Г= ∂w, the conservation equations for mass and linear mo-
mentum governing the continuous body can be defined as

d
dt
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where r is the mass density, v is the velocity, ɑ is the 
acceleration, σ is the Cauchy stress tensor, and b is the 
specific body force.

Discretization of continuum equations
To solve the continuum equations, the strong form of 
the equations is transformed into a weak form and dis-
cretized by using standard FEM procedures. After the 
multiplication with finite element shape functions, the 
linear momentum equation (2) becomes

:
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Where N is the total number of degrees of freedom 
(DoF) in a computational domain c, i, j are its indices, 
ɑj is the acceleration at DoF j, Ni is the shape function 
of DoF i, t is the surface traction, and Γc is the surface 
boundary of the computation domain Wc . The first term 
of the right hand side of (3) is defined as the internal 
force of the system, fint . The sum of the second and the 
third terms of the right hand side can also be defined as 
the external force of the system, fext. Meanwhile, compa-
rable to conventional FEM, the numerical integration of 
MPM over Wc is approximated by summing the weight 
contribution of each material point as follows
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F is an arbitrary function to be integrated over the ele-
ment, xp is the location of material point p and vp is the 
volume of the material point p. The internal force vector 
fint can then be approximated by
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Implicit time integration scheme
Solving a single step in MPM is identical to conventional 
FEM. The Newton-Raphson method is adopted to solve 
the equation of motion implicitly. The linearized equa-
tion of motion during a Newton iteration k for an arbi-
trary time step is defined as (Wieckowski 2004)
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where K is the tangent matrix of the system, m is the 
mass matrix, duj is the incremental displacement of DoF 
j, Q is the residual vector, and k is the iteration step. 
Equation (6) is solved iteratively, until the residual of the 
system is less than a defined convergence criteria Q < ε. 
The displacement update is given as
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The acceleration term can be calculated by discretizing 
the time derivative with a trapezoidal rule. The discre-
tized acceleration term is given as
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where the v0
j and a0

j terms are the nodal velocity and 
acceleration at the start of the time step.

Numerical implementation of implicit dynamic MPM
At the beginning of a calculation step, all state variables 
are stored in the material points. These state variables 
are then interpolated to the computational grid using 
the standard shape function interpolation. The nodal 
velocity (and nodal acceleration) can be interpolated by 
using conservation of momentum
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As the computational grid represents the current con-
figuration of the model, the Updated Lagrangian formu-
lation of discrete equations is used. In this formulation, 
the elasticity tangent matrix is defined by

: :
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Cσt is the fourth order tensor of Truesdell rate of elas-
tic tangent modulus and σ is the Cauchy stress ten-
sor. Equation (10) also shows that the tangent matrix 
includes terms of material nonlinearity (first term) and 
geometrical nonlinearity (second term). The tangent 
modulus tensor depends on the constitutive model of 
the material and will not be elaborated here. Equation 
(10) is solved to obtain the incremental displacement du. 
The computational grid is then deformed with the solu-
tion, and the kinematics of the system is then updated 
before the next iteration begins. The update of the ve-
locity term is given by
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while the nodal acceleration is updated by using (8).

After the Newton procedure has satisfied the required-
convergence criteria, a convective stage is carried out 
in the MPM region to update the state variables from 
the computational grid back to the material points. The 
convection step is performed by interpolating nodal re-
sults from the computational grid to the material points 
with standard approximation functions defined on the 
mesh. Once the convective stage has been carried out, 
the deformed computational grid can be discarded be-
cause all the state information is now stored in the ma-
terial points. As a result, excessive mesh distortion is 
prevented.

3 Challenges of MPM calculations
Herausforderungen von MPM-
Berechnungen

MPM calculations are more time consuming and more 
sensitive to inaccuracies than FEM calculations. Hence, 
the use of MPM in practical applications brings some 
challenges. In this section, we will discuss a number 
challenges and its corresponding solutions.

3.1 Points moving from one cell to another
Punkte, die von einer Zelle in eine andere 
Zelle wandern

When a material point crosses the boundary of a cell, 
a discontinuity occurs in the gradient of the computed 
displacement which, for example, leads to inaccurate 

stresses. Without a proper treatment of this numeri-
cal noise, the application of MPM to cases with large 
deformations is severely limited, since the inaccurate 
stresses may cause a premature prediction of mate-
rial failure and change the physical characteristics of 
the material. These inaccuracies can be reduced sig-
nificantly by using an enhanced version of MPM, such 
as the generalised interpolation material point (GIMP) 
method (Bardenhagen & Kober 2004) or the dual do-
main material point (DDMP) method (Zhang et al. 2011). 
The latter will be discussed in more detail in 3.6.

The GIMP method is a family of extended MPMs, where 
material points are defined by so-called particle charac-
teristic functions. These functions represent the space 
occupied by the respective particle and follow the same 
deformation as the discretised physical domain. In par-
ticular, the integration over the support of these func-
tions poses a practical challenge. Whereas, in the one-
dimensional case, the integration can still be performed 
analytically, as shown in (Bardenhagen & Kober 2004), 
one usually has to employ an expensive numerical in-
tegration technique for the two- and three-dimensional 
case. If the particle characteristic functions are chosen 
to be Dirac delta functions, the classical MPM from  
Sulsky et al. (1994) and Sulsky et al. (1995) is recovered.

In contrast to the GIMP method, the DDMP method does 
not require tracking the actual deformation of the parti-
cles. Instead of modifying the shape functions, it intro-
duces a modified gradient definition which is continu-
ous across cell boundaries. The support of this modified 
gradient is larger than the support of the shape function 
itself, but it is still limited to the cell in which the material 
point is located and its direct neighbours. Thus, the in-
teraction between different material points is restricted 
to a quasi-local domain. In particular, the calculation of 
the modified gradient only requires an additional inte-
gration of the shape function and, thus, can be realised 
very easily. A more detailed discussion of the DDMP 
method will be provided in 3.6.

3.2 Dealing with empty cells
Umgang mit leeren Zellen

When all material points have left a cell, the cell has 
no stiffness or mass contributions in the global matrix. 
To avoid singularity of the system of equations, a small 
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elastic stiffness is placed in these empty cells. This 
procedure is also applied to ‘buffer’ cells (for example 
above the soil surface) that are initially empty, but are 
present to catch material points that are moving above 
the initial surface.

3.3 Determining active boundaries
Bestimmung aktiver Ränder

Since the active domain is formed by the (moving) ma-
terial points rather than by the calculation grid itself, a 
special procedure is needed to determine the bounda-
ries of the active domain occupied by the soil. For this 
purpose, we have developed a level-set formulation, 
where the actual boundary is given by the zero level-
set. Then, this zero level-set isosurface can be used 
for integrating over the active boundary and, therefore, 
applying, e.g., boundary conditions on it (see also 3.5). 
In general, this approach allows for treatment of the 
boundaries as if their explicit formulation was available. 
Thus, no entirely new procedures for applying bound-
ary conditions or determining computed quantities on 
the boundary have to be derived.

3.4 Connecting MPM to FEM domain
Verbinden von MPM- und FEM-Gebiet

Since MPM is ‘expensive’, it should be used only where 
really necessary, whereas parts of the domain that un-
dergo relatively small deformations can be modelled by 
conventional FEM using an Updated Lagrangian formu-
lation. This means that the FEM domain as well as the 
MPM domain can deform. Hence, the Convection Phase 
(Fig. 1.3) involves an elastic stretch (adhering to the de-
formations of the FEM mesh), rather than a full restora-
tion of the original grid.

In the FEM domain, conventional quadrature points 
are used for computing the integrals, while the MPM 
domain uses material points as quadrature points. Be-
cause we are using an implicit formulation of MPM, the 
coupling between the FEM and MPM can be done natu-
rally. The analysis procedure remains the same, except 
that, at the end of each calculation step, a mesh relaxa-
tion procedure is performed in the MPM domain to re-
store the deformed mesh in addition to the convection 
step of MPM. An artificial constraint is added to the FEM 

domain to prevent the mesh in the FEM domain from 
restoring, while the mesh in the MPM domain is relaxed 
back to its least deformed state by removing external 
loads contributing to the system. In this way, the mesh 
distortion problem in the MPM domain can be mitigated, 
while maintaining the validity of the deformation state of 
the FEM domain.

3.5 Application of loads and boundary  
conditions
Anwendung von Belastungen und 
Randbedingungen

Since model boundaries are determined by material 
points rather than by the domain boundaries, the appli-
cation of loads and boundary conditions has to involve 
some special procedures. For basic boundary condi-
tions, such as prescribed displacements and distributed 
loads, we can employ the level-set formulation described 
in 3.3 to calculate the corresponding boundary integrals.

However, due to possibly large deformations of the 
soil and, thus, also its boundaries, it has to be evalu-
ated thoroughly whether a classical boundary condi-
tion acting always in the prescribed direction relative 
to the boundary is the correct choice. Often, the dis-
placements and loads, which shall be applied, have the 
characteristics of a soil-body contact-interaction rather 
than a pure Dirichlet or Neumann boundary condition. 
This desired behaviour can be achieved by employing 
a full contact formulation as described in 3.7. In this way, 
it is guaranteed that the interaction between the freely 
moving soil and the physical body placed on top of it is 
resolved correctly.

3.6 Use of DDMP to ‘smoothen’ the solution
Anwendung von DDMP zur Glättung  
der Lösung

Discontinuities of stresses across cell boundaries as 
mentioned under 3.1 may be overcome by introducing a 
kind of C1-continuity across cell boundaries. The DDMP 
method is a way to enforce such a ‘smooth’ transition 
across all cell boundaries in the calculation grid and, 
thereby, improving the accuracy of stresses. For a de-
tailed introduction to the DDMP method, we refer to the 
original work by Zhang et al. (2011).
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In addition to the DDMP method described in Zhang et 
al. (2011), we have extended its formulation by introduc-
ing a tangent stiffness for the DDMP formulation. The 
reason for this modification is that the original method 
was derived in an explicit scheme and, thus, is not suit-
able for our implicit MPM implementation. In general, 
DDMP results show less pollution of gradient quanti-
ties, such as stresses and strains, caused by numerical 
noise. As a side effect, DDMP also improves conver-
gence of the Newton-Raphson method slightly com-
pared to standard MPM.

3.7 Contact formulation
Formulierung von Kontakten

The algorithm for contact interaction between a spud-
can, modelled with FEM and MPM based soil was initially 
introduced in Andreykiv et al. (2011). It is based on the 
minimization of the energy functional with a Lagrange 
multiplier and formulated as in classical contact mechan-
ics. However, instead of employing a distance function 
between two contacting bodies, we use the above men-
tioned density-based level-set function which marks the 
boundary of the material points. Due to the fact that the 
level-set function is defined on the full soil domain, the 
spudcan surface is embedded into the soil domain and 
the contact constraint is enforced similar to the fictitious 
domain method (Glowinski et al., 1994).

3.8 Stability of calculation
Stabilität der Berechnung

Due to several additional tools and parameters available 
in MPM, e.g., number of material points per cell, size and 
stiffness of empty layer, treatment of boundary condi-
tions, etc., it is very challenging to make MPM calcula-
tions as stable and as easy to use as it is known and 
expected from conventional FEM calculations. The large 
variety of possible combinations of all these parameters 
requires a significant effort to come up with a suitable 
choice working for all possible applications and, thus, 
not to require too much input from the end-user.

Apart from the successful selection of parameters, the 
conditioning of system matrices is generally worse in 
MPM than in FEM. Therefore, an efficient precondition-
er, such as domain decompositioning and algebraic or 

geometric multigrid, is needed to be able to apply an 
iterative solver to the resulting linear systems of equa-
tions.

Often the convergence of a static MPM calculation can 
be improved, by reformulating it as a dynamic MPM cal-
culation reaching a steady state. In the case of a dynam-
ic calculation, the step size of the time discretisation has 
to be chosen carefully. Due to the additional phases re-
quired in each MPM step (see Figure 1), small step sizes 
are more expensive than in standard FEM calculations. 
However, due to the large deformations typically occur-
ring in MPM calculations, the step size cannot be too 
large in order to be still able to solve the discrete non-
linear problem in each time step. Therefore, an adaptive 
time stepping scheme allowing for the automatic incre-
ment and decrement of the time step size whenever 
required is inevitable. In our calculations, the use of an 
adaptive Newmark-beta method with b = 0.5 instead of 
the standard undamped choice b = 0.25 proved to be a 
reasonable time stepping scheme.

4 Applications in offshore  
geotechnics
Anwendungen in der Offshore-
Geotechnik

Very large deformations and material flow can occur, for 
example, in geotechnical offshore applications, such as 
the installation of piles and anchors in the seabed, spud-
can penetration and extraction, the creation of trenches, 
as well as pipeline and cable movements. MPM is par-
ticularly useful for such applications (Lim et al. 2014).

The presented solutions as described in the previous 
chapter are meant to facilitate the use of MPM on a 
larger scale by geotechnical engineers in offshore en-
gineering and other fields of applications. The remain-
der of this section describes some applications in which 
MPM has been used successfully.

4.1 Pile installation
Einbau von Pfählen

A first application involves the penetration of a sheet 
pile into the soil (after Lim et al. 2013), for which a 2D 
plane strain model is used  (Fig. 2). Here, a fictitious 
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weightless soil is considered, modelled by means of 
the linear elastic perfectly plastic Tresca model with 
stiffness properties Es = 100 kN/m2 and n = 0.33, and dif-
ferent cohesive strengths of c = 0.25, 0.50 and 1.0 kN/
m2, respectively. The weightless sheet pile is modelled 
as a linear elastic volume with stiffness properties Ep = 
20000 kN/m2 and v = 0.0.

The soil domain is divided into an MPM region, where 
large deformations and pile-soil contact are expected, 
and a FEM region further away from the pile, where 
smaller deformations occur. An MPM buffer region 
is used to catch material points moving above the 
ground surface. The analysis is performed using lin-
ear triangular elements as well as quadrilateral ele-
ments with a refinement around the pile. The pile-soil 
contact is not explicitly modelled and is obtained from 
the ‘standard’ MPM formulation. Each MPM element 
initially contains 12 material points for the triangular 
elements and 16 material points for the quadrilateral 
elements. 

All vertical sides of the model are fixed in normal di-
rection, while the bottom boundary of the model is fully 
fixed (‘standard’ fixities). Sheet pile penetration is mod-
elled by applying prescribed vertical displacements at 
the top of the pile in steps of 0.05 m, until a maximum 
penetration depth of 2.5 m is reached. The calculations 
are performed with the ‘standard’ MPM formulation as 
well as with DDMP.

Results
Fig. 3 shows the average vertical stress at the top of 
the pile as a function of the penetration depth for dif-
ferent soil strengths. The graph shows that the average 
vertical stress (and hence the total pile bearing capac-
ity) increases with the pile penetration depth. It can be 
verified that the results of Fig. 3 present a slight over-es-
timation of the theoretical bearing capacity. This over-
estimation can be reduced with mesh refinement and 
adding more material points to the elements (see also 
Lim et al. 2013).

Fig. 4 shows the vertical soil stress in a section below 
the pile, for different pile penetration depths. The verti-
cal location is expressed in the corresponding vertical 
coordinate (y), where y = 0 represents the bottom of the 
MPM region. It can be seen that the DDMP calculations 
give smoother stresses than the pure MPM calculations, 

Figure 2: Geometry of pile and soil, with indication of FEM 
and MPM regions

Bild 2: Pfahl- und Bodengeometrie mit Angabe der FEM- 
und MPM-Bereiche

Figure 3: Average vertical stress in the pile as a function of 
penetration depth (triangular elements)

Bild 3: Durchschnittliche vertikale Spannung im Pfahl 
in Abhängigkeit von der Eindringtiefe (Dreieck-
elemente)
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although for the deepest penetration none of the re-
sults are very smooth. 

Based on these results it can be concluded that MPM 
is usable for pile penetration in cohesive soils, but the 
accuracy of stresses is limited.

4.2 Spudcan punch through
Durchstanzen einer Spudcan in die 
Weichschicht

A spudcan is used as a foundation element for offshore 
platforms in the seabed. Spudcan installation and load 
testing involves large soil deformation. In situations 
where there is a stiff soil layer on top of a softer soil 
layer, the installation of the spudcan may face ‘punch-
through’ failure. This mechanism is caused by a (sud-
den) decrease of bearing capacity when the spudcan 
penetrates from the stiff layer into the soft layer. In this 
application, we have adopted case study 2 of the work 
presented by Khoa (2013).

On the left of Fig. 5, a 3D slice of the spudcan and the 
soil medium is shown. Due to axisymmetry of the prob-
lem, only  r/16 of the cylinder is taken into account in 
the 3D model. Standard fixities are applied. Two layers 
of soil with different soil properties are defined, with lay-
er A indicating a bottom layer of soft clay, while layer B 
indicates a top layer of stiff clay. For both soil layers, the 
Tresca model is used as failure criterion, with undrained 
shear strength of sUa = 11.0 kN/m2 and suB = 38.3 kN/m2 

respectively. The soil layers have elastic stiffnesses, 
EA = 4933.50 kN/m2  and EB = 17177.60 kN/m2, while both 
layers have an effective Poisson’s ratio of v = 0.333. The 
self weight of the soil is not taken into account in this 
simulation and the initial stress state of the soil layers 
is zero. The undrained condition of the problem is ap-
plied by using the (p-u) mixed formulation as mentioned 
in the Introduction. The spudcan, on the other hand, has 
dimensions stated on the right of Fig. 5. It is defined as 
a linear elastic material, with an elastic stiffness about 
200 times higher than the elastic stiffness of soil lay-
er B. A smooth contact is applied on the surface of the 
spudcan.

The computational grid is subdivided into two regions. 
The first region is the MPM region, which is located near 
to the area of spudcan penetration. Further away from 
the penetration area, a FEM region is defined. A buffer 
zone with height about two elements is defined above 
the MPM region to capture material points that are mov-
ing beyond the original soil surface.

Results
Fig. 6 shows the penetration of the spudcan and the soil 
deformation at a depth equal to the spudcan diameter. 
A clear vertical cut is created by the spudcan penetra-
tion, but the cut has remained stable during the whole 
simulation process because the self weight of the soil 

Figure 5: Geometry of the spudcan and soil layers  
(dimensions in m)

Bild 5: Geometrie von Spudcan und Bodenschichten 
(Maße in m)

Figure 4: Vertical stress below the pile for different penetra-
tion depths (quadrilateral elements)

Bild 4: Vertikale Spannung unterhalb des Pfahls für un-
terschiedliche Eindringtiefen (Viereckelemente)
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penetrates further into the soil. This reduction of bear-
ing capacity is caused by the reduction of the effective 
thickness of the stiff soil layer when the penetration goes 
deeper into the soil. This phenomenon of reduction in 
bearing capacity could not be captured by small strain 
FEM analysis. This punch through failure is significant in 
spudcan installation processes because the reduction of 
the bearing capacity in the soil will cause the spudcan 
to penetrate rapidly into the softer layer. As the spud-
can installation is usually performed by placing a weight 
on top of the spudcan, punch through failure may cause 
catastrophic loss during the installation of the spudcan.

Based on these results it can be concluded that MPM is 
usable for spudcan penetration and punch-through in 
cohesive soils.

layers is not taken into account in this analysis. A plug of 
stiff soil is trapped below the spudcan, but, in a later 
stage of penetration, this plug of stiff soil is slowly mov-
ing sidewards from the base to the side of the spudcan. 
This trapped plug of stiff soil was also observed in 
Case 2 of Khoa (2013).

Fig. 7 shows the boundary between the FEM and MPM 
region at the final deformation stage of the spudcan 
penetration process. By using the mesh relaxation 
method, we are able to preserve the deformation his-
tory of the FEM region, as well as recovering the mesh 
in the MPM region to the least deformed state.

The bearing response of the soil is presented in Fig. 8. 
The vertical axis represents the normalized penetra-
tion depth of the spudcan, d/D, while the horizontal axis 
represents the normalized bearing pressure of the soil, 
Qn = q / suB. Before the penetration depth of d/D = 0.167, 
the rate of increment of bearing pressure caused by the 
penetration of the tip of the spudcan is relatively slow. 
After d/D = 0.167, the bearing pressure of the soil starts 
to increase rapidly as more surface of the spudcan is in 
contact with the soil. The bearing capacity reaches its 
maximum at about Qn = 21, which is the point where the 
surface of the soil is in contact with the full bottom of 
the spudcan. After the plateau, the bearing capacity of 
the spudcan started to decrease slowly as the spudcan 

Figure 6: 3D view of the penetration process when the 
spudcan is at d/D = 1.0

Bild 6: 3D-Darstellung des Eindringvorgangs bei einer 
Eindringtiefe der Spudcan von d/D = 1,0

Figure 7: Smooth transition from FEM to MPM
Bild 7: Gleitender Übergang von FEM zu MPM

Figure 8: The bearing response of the soil in the spudcan 
penetration process.

Bild 8: Auflagerreaktion des Bodens beim Eindringen der 
Spundcan
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4.3 Pipeline movement
Bewegung der Pipeline

The third application concerns the movement of a pipe-
line in the seabed. A pipeline with an outer diameter 
of 0.8 m is embedded in the seabed and subsequently 
moved in lateral direction. This movement can have dif-
ferent causes, but the question is which path the pipe-
line will follow, how the soil is going to be displaced and 
what is the resistance from the soil.

The soil has an effective (submerged) unit weight of 6.5 
kN/m3 and is modelled by means of the linear elastic 

perfectly plastic Tresca model with an undrained shear 
strength profile of 2.3 kN/m2 at the top and an increase 
of 3.6 kN/m2 per meter depth. The stiffness also increas-
es with depth, following the undrained shear strength 
profile: Es = 500 su..

The model used for this situation is a 2D plane strain 
model (Fig. 9) with an MPM region of 1.0 m thickness 
consisting of linear quadrilateral elements with 9 mate-
rial points per element, and a FEM region of 7.0 m thick-
ness consisting of linear triangular elements. Above the 
ground surface there is a MPM buffer region. The pipe-
line itself has a weight of 6.0 kN/m and is composed of 
linear elastic 6-noded triangular finite elements with a 
stiffness of Ep = 50 Es. The pipeline is initially ‘pushed’ 
into the soil (Phase 1) after which it is ‘balanced’ at its 
own weight (Phase 2) before it is moved in horizontal 
direction at a velocity of 0.24 m/s for more than 2 m 
by prescribing the horizontal displacement components 
whilst the vertical components are free (Phase 3). In or-
der to stabilize the calculations (in particular the last 
phase), the calculations are performed as full dynamic 
calculations, including inertia and a slight damping of 
the Newmark-beta scheme as described in 3.8.

Results
Fig. 10 shows the time-settlement curve for the first two 
phases. It can be seen that there is very little rebound in 
Phase 2 when the external force is removed.

Figure 9: Pipeline model
Bild 9: Modell einer Pipeline

Figure 10: Time-settlement curve of the pipeline during Phase 1 (pushing in) and Phase 2 (balancing)
Bild 10: Zeit-/Setzungskurve der Pipeline während Phase 1 (Einschieben) und Phase 2 (Ausbalancieren)
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Fig. 11 shows the movement path of the pipeline in Pha-
se 3. The vertical position is obtained from the equili-
brium between the self weight of the pipeline and the 
vertical soil stress, while the pipeline is pushed in lateral 
direction. Due to the fact that not only the pipeline is pu-
shed, but also the soil in front of the pipeline, a ‘heap’ of 
soil is created in front of the pipeline. This ‘heap’ causes 
the pipeline to move above the original seabed level, as 
depicted in Fig. 12.

Noteworthy is the shape of the ‘heap’ in front of the 
pipeline, which looks rather unrealistic. It might be ex-
pected that the soil should ‘fall down’ rather than stay-
ing in the position as displayed in Fig. 12.  Here, the 
following aspects should be considered:

 • Material points do not represent particles, but mate-
rial volumes with representative properties and state 
parameters

 • The soil has a purely cohesive strength
 • It is a dynamic analysis in which inertia effects are 

taken into account; the end of the analysis is not a 
steady-state situation

 • Elements still have stiffness as long as they contain 
at least one material point

Based on these results it can be concluded that MPM is 
usable for pipeline movements in cohesive soils.

So far, we have primarily performed analyses for soils in 
which their strength properties are described by means 
of undrained shear strength, which is a common ap-
proach in offshore geotechnical engineering. The use 
of effective strength properties (frictional strength) in 
the Mohr-Coulomb non-associated plasticity model in-
volves some more challenges on numerical stability, 
which is subject of further research

5 Conclusions
Zusammenfassung

In this contribution some of the challenges have been 
presented in an attempt to make the material point 

Figure 11: Path of the pipeline in Phase 3 (lateral movement).
Bild 11: Weg der Pipeline in Phase 3 (seitliche Bewegung)

Figure 12: Position of the pipeline at the end of the analysis.
Bild 12: Lage der Pipeline am Ende der Analyse
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method (MPM) for large deformation analysis of soil-
structure interaction problems suitable for practical ap-
plications. Solutions to these challenges include:

 • The use of DDMP to smoothen the stresses and to 
improve the convergence

 • The use of dynamic analysis (inertia and damping) 
and an automatic time stepping algorithm to make 
the calculations robust and stable

 • A level-set approach to detect model boundaries
 • A special level-set contact formulation to model soil-

structure interaction

Examples were shown involving offshore geotechni-
cal applications, i.c. the installation of a (sheet) pile, 
the punch-through of a spudcan and the movement 
of a pipeline in the seabed. These results cannot be 
obtained using the ‘standard’ finite element method. 
Hence, the material point method offers possibilities to 
numerically analyse and optimise situations that cannot 
be modelled with standard FEM. Using the above solu-
tions, we have shown that it is possible to use MPM on a 
larger scale for offshore geotechnical engineering and 
design applications.
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